Tag: propensity scores

Assessing the sensitivity of matching algorithms: The case of a natural resource management programme in Honduras

A fundamental challenge in impact evaluations that rely on a quasi-experimental design is to define a control group that accurately refl ects the counterfactual situation. Our aim is to evaluate empirically the performance of a range of approaches that are widely used in economic research. In particular, we compared three diff erent types of matching algorithms (optimal, greedy and nonparametric). These techniques were applied in the evaluation of the impact of the MARENA programme (Manejo de Recursos Naturales en Cuencas Prioritarias), a natural resource management programme implemented in Honduras between 2004 and 2008. The key findings are: (a) optimal matching did not produce better-balanced matches than greedy matching; and (b) programme impact calculated from nonparametric matching regressions, such as kernel or local linear regressions, yielded more consistent outcomes. Our impact results are similar to those previously reported in the literature, and we can conclude that the MARENA programme had a significant, positive impact on beneficiaries.

Journal Metrics

Scimago Journal & Country Rank





  • Scopus SJR (2023): 0.29
  • Scopus CiteScore (2022): 2.0
  • WoS Journal Impact Factor (2023): 0.9
  • WoS Journal Citation Indicator (2023): 0.33
  • ISSN (electronic): 2063-0476
  • ISSN-L 1418-2106



Publisher Name: Institute of Agricultural Economics Nonprofit Kft. (AKI)

Publisher Headquarters: Zsil utca 3-5, 1093-Budapest, Hungary

Name of Responsible Person for Publishing:        Dr. Pal Goda

Name of Responsible Person for Editing:             Dr. Attila Jambor

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The publication cost of the journal is supported by the Hungarian Academy of Sciences.

Most viewed